
We Authenticate The Internet

Prepared by Alan DeKok, CEO

Date 2024-03-02

DISCLAIMER
The information in this document is confidential, and is Copyright © 2024 InkBridge Networks. All Rights Reserved.

The information in this document are based on the current knowledge of InkBridge Networks. We reserve the right to withdraw or
change the contents of this document at any time. We accept no responsibility should any damages be caused to a person, persons,
device, devices, or organization as a result of the use that is made of information provided in, or taken from, this documentation or as
a result of reliance on the information in this documentation.

High performance
DHCP

We Authenticate The Internet

Executive Summary

This data sheet describes the high performance DHCP server product from InkBridge Networks (formerly
Network RADIUS). It allocates 10,000 leases per second per CPU core, on commodity hardware, and using “off
the shelf” software. Minimal customization is required, and configuration changes can be made live while the
service is running.

For more information, please contact us at: sales@inkbridge.io

We produce the most widely deployed RADIUS server in the world. With more than one hundred thousand
(100,000) installations, it has been used in a wider variety of environments than any other product.

Since 2008, we have also produced a DHCP server which is based on FreeRADIUS. It offers unparalleled
flexibility, while achieving world-leading performance.

Copyright © 2024 InkBridge Networks. All Rights Reserved. 2

We Authenticate The Internet

Executive Summary 2
1. Introduction 1

1.1 Why FreeRADIUS 1

1.2 Performance Optimizations 1

1.3 Benefits of Redis 1

2. Customer Use-Case 2
2.1 Databases and Directories Used 2

2.2 System Migration 3

2.2 Fail-Over and Fail-Back 3

2.3 How we use Redis 3

3. DHCP Operation 4
3.1 DHCP Discover 4

3.2 DHCP Request 4

3.3 DHCP Release 4

3.4 Lease Management 4

Contact 5

Copyright © 2024 InkBridge Networks. All Rights Reserved.

Table of Contents

We Authenticate The Internet

1. Introduction
DHCP Servers have traditionally offered
performance in the range of tens to hundreds of
leases per second. Some larger commercial
offerings accept higher load, but at a substantially
increased cost.

We have built on the proven FreeRADIUS code
base. When using Redis Cluster as the back-end
database, we achieve unparalleled performance
and flexibility. The end result is a system that
achieves 10K DORAs (Discover, Offer, Request,
Allocate) per second, per CPU core, while
offering full security and consistency checks for
each lease allocation.

1.1 Why FreeRADIUS
Using a RADIUS server for a DHCP solution may
seem to be an unusual choice. For us, the choice
comes out of our desire to offer flexible DHCP
policies.

Most “open source” DHCP servers offer very little
flexibility in the policy rules that they implement.
Typically, the leases are assigned from statically
configured pools, with a simplistic (and fixed)
database back-end. Complex policies are
extremely difficult to implement, and integration
with multiple databases is impossible.

Commercial DHCP servers are little better.
Unfortunately, while they offer simple graphical
user interfaces for day-to-day administration,
complex tasks and automation must be
performed via an extensions API. Additionally, the
proprietary databases used in these commercial
solutions can become a form of vendor lock-in,
making migration to other platforms difficult. This
limitation is not acceptable for new deployments.

Adding DHCP support toFreeRADIUS required
minimal effort. IP allocation was already available
for IP assignment via RADIUS. Supporting DHCP

was as simple as adding protocol-specific packet
encoders and decoders. The extensible “plug in”
nature of FreeRADIUS abstracted away the
differences between RADIUS and DHCP, and
ensures that neither the internal policy engine,
nor the datastore back-ends are aware that they
were processing DHCP packets instead of
RADIUS packets.

1.2 Performance Optimizations
Some DHCP servers suffer from NIH (Not
Invented Here) syndrome. Instead of specializing
in the DHCP protocol, they attempt to implement
everything themselves, including a simplistic
database and API. Their implementations are
usually limited to tens or hundreds of leases per
second. These limitations arises because the
databases fully synchronous, meaning that lease
data must be data is written to disk before the
lease can be allocated. While safe, this design is
slow in practice.

In contrast, FreeRADIUS implements just the
DHCP protocol, and relies on external databases
to store lease data. This approach allows the
administrator to choose the combination of
performance vs safety which best meets the
needs of the local network. 

1.3 Benefits of Redis
Redis cluster as a lease store is particularly
interesting, as it has a good balance of scalability,
fault tolerance and raw performance. Distributing
the operations over multiple nodes in a cluster
ensures that the data is copied to multiple slaves,
instead of being written synchronously to local
disk. The only time that leases can be lost is
when the majority of datastore nodes fail at the
same time. Outside of a complete power outage
with no UPS, this situation is rare.

The Redis IP allocation module developed for
FreeRADIUS communicates directly with Redis
cluster. It implements the full Redis Cluster
protocol, including load-balancing, fail-over and

Copyright © 2024 InkBridge Networks. All Rights Reserved. 1

We Authenticate The Internet

live node detection. The number of slaves
required to report receipt of lease data is
tuneable, meaning administrators can make the
right trade off between latency and reliability for
their environment.

Our tests show this system is capable of
allocating 10K leases per second, per CPU core,
all on commodity hardware. For redundancy, we
recommend using at least two front-end servers,
and at least four Redis Cluster nodes. This high
availability configuration is capable of handing
out 40K leases per second. Configurations with
more Redis Cluster nodes can easily reach 100K
or more leases per second.

As a high performance solution, it is unparalleled
in the cost per unit of performance. The goal for
us is to provide the highest performance solution
at the most competitive price, and we have
achieved that goal. The trade-off is that for now,
the product does not have a graphical user
interface, and instead relies on direct database
modification for configuration changes.

2. Customer Use-Case
We were approached by a customer who
operates an ISP in the United States, with a few
hundred thousand end users. Their existing
DHCP solution was old, and needed replacing.
They had approached a few commercial DHCP
vendors, and were quoted prices in the range of
a few hundred thousand dollars for the system,
plus a cost in the high tens of thousands of
dollars per year for support. This price was
unworkable for them.

The customer was already using FreeRADIUS for
the RADIUS side of their business, and were
aware that the server included DHCP support.
They contacted us to see if we could meet their
DHCP needs.

After an investigation, we determined that we
could meet their requirements for both total cost

of ownership (TCO), and for system
performance.

The rest of this document describes how the
system was built.

2.1 Databases and Directories Used
We built a system which uses two databases,
with each datastore being used where it is most
efficient.

Dynamic lease information such as active IP
addresses, free IP addresses, and IP / device
mappings) were stored in the Redis cluster.

Information which is mostly static was stored in
an LDAP directory. This information included
subscriber information such as name and MAC
address; pool / gateway associations, DHCP
options associated with each pool, and static IP
addresses.

All information retrieved from LDAP was cached
locally. This caching further reduced the load on
the LDAP server. It also improved system
survivability, which allowed continued operation
of DHCP even if FreeRADIUS was isolated from
the directory server.

The resulting system has the best of both
databases. All IP pool and range information is
stored in LDAP, and can be dynamically modified
without restarting the DHCP server. All leases are
stored in Redis Cluster, which maintains data
duplication while offering high performance.

In customer tests of a catastrophic network
event, the system successfully brought all end
users online within ten (10) seconds. This
performance is high enough that network outages
due to an overloaded DHCP server are a thing of
the past.

The only time that leases can be lost is when the
majority of datastore nodes fail at the same time.
Outside of a complete power outage with no
UPS, this situation is rare.

Copyright © 2024 InkBridge Networks. All Rights Reserved. 2

We Authenticate The Internet

2.2 System Migration
The customer had an existing DHCP solution,
which was in daily use. There was a hard
requirement to not have a “flag day”, where the
old system went down, and the new system was
started. We therefore designed a migration
system which required zero down-time.

The first step was to analyze the existing system,
and to extract all information about ranges,
options, pools, IP addresses, etc. This
information was used to build the new DHCP
system.

Once the new DHCP system was operational, it
was configured to operate on a “span” port. This
configuration allowed monitoring of all DHCP
traffic. The system was configured to go through
the normal DHCP allocation process, but not to
reply to the DHCP requests.

Instead, the responses created by the new
system were cached, and compared to the
responses sent from the existing system. Any
differences caused an alert to be logged.

When the two systems had identical responses,
we proceeded to the next step. The network was
updated so that the new system acted as a
gateway,. It received DHCP requests, and
relayed them to the old system. Crucially, it also
updated the giaddr field so that the responses
from the old DHCP server would be sent to the
new system.

When it received the response, it would store the
response, and update the reply packet with the
correct giaddr. The complex policies allowed by
FreeRADIUS made this process trivial.

As the clients renewed their leases, the new
system would allocate the lease itself, instead of
relaying the request to the old system. After a few
days of operation, the old system was no longer
receiving any packets. It could then be safely
decommissioned with no effect on the network.

2.2 Fail-Over and Fail-Back
As with any system migration, there were issues
discovered during the migration process. The
design of the system ensured that we could
easily remove the new system from the network,
and fall back to using the old system. Due to the
configurable nature of FreeRADIUS, this process
could be done live, without affecting service
levels.

The ability to migrate the leases without affecting
service levels was a critical requirement for the
customer, and a large influence in their decision
to use FreeRADIUS as their DHCP server.

2.3 How we use Redis
In this section, we describe at a high level how
we store DHCP lease data in Redis.

First, the free leases are stored in a Redis ZSET
which is ordered by the Unix timestamp.
Obtaining a free lease is then an O(log(n))
operation, which scales out to tens of millions of
leases on commodity hardware.

Second, the IP addresses are stored in a Redis
HASH. The hash contains four keys: range;
device; gateway, and counter. The “range”
contains the name of the address range to which
the IP address belongs. The “device” is a unique
identifier for the DHCP client, which is typically
the MAC address. The “gateway” is the DHCP
gateway through which the allocation request
was received. The “counter” indicates how many
times the lease has been allocated and released
by the client.

Finally, there association between the device and
allocated IP address is stored in a Redis STRING
type. This information is keyed off of the IP pool
and client identifier. This allows the server to
detect clients which attempt to allocate an entire
range of addresses. When the system
determines that a device has an active
association, it refuses to allocate new and
different IP addresses for that device.

Copyright © 2024 InkBridge Networks. All Rights Reserved. 3

We Authenticate The Internet

3. DHCP Operation
In this section, we describe how the DHCP
service operates. The descriptions are at a high
level, and do not include all of the technical
details required to implement a full solution.

3.1 DHCP Discover
When a DHCP discover is received, the server
looks up the device in the Redis Cluster. If a
lease is active for that device, the lease is
returned, and processing stops.

An LDAP lookup is performed to discover static
IPs. If found, the IP is marked as allocated and is
returned to the user.

Otherwise, the Redis ZEVRANGE command is
used to find the older expired IP address in the
pool. Failure to find a free lease triggers an
SNMP trap.

The Redis ZADD command is then used to
allocate the lease with a short expiry time. This
expiry follows DHCP best practices, and ensures
that leases are expired quickly if not
acknowledged by the client.

An LDAP lookup is performed in order to return
any range-specific DHCP options. This
information is also cached in order to minimize
the load on the LDAP server.

The Redis hash is then updated with the device
information, IP address, expiry time, etc., and the
lease is returned to the client.

3.2 DHCP Request
When a DHCP Request is received, the server
looks up the device in the Redis Cluster. If no
lease is found or the device does not match the
allocated lease, a DHCP NAK is immediately
returned. This NAK indicates to the client that the
lease request was invalid, and that it should start
the process again with a DHCP Discover.

Otherwise, the hash is updated with the new
expiry time for the lease, and the lease is
returned to the client, along with the cached
DHCP option information.

3.3 DHCP Release
As with the DHCP Request above, the device is
looked up in the Redis Cluster, and a NAK is
returned if the device information does not match.

Otherwise, the mapping between IP and device is
removed from the Redis Cluster. Dynamic leases
are marked as free and returned to the free pool,
while static IP leases are simply deleted.

3.4 Lease Management
Lease management is performed by updating the
LDAP datastore. DHCP options and static IP
assignments can be modified directly in LDAP.
Range additions or removals are done via a set
of Lua scripts which ensure consistency across
the multiple Redis data sets.

At no time does the DHCP server need to be
restarted. As the underlying databases are
lockless or MVCC compliant, the DHCP server
does not even block while datastore operations
are being performed.

One key design of this solution is the clear
separation between static and dynamic IP
addresses. As the databases are not aware of
application- specific requirements, they cannot be
relied on to perform the “correct” operation when
inconsistencies occur. Any conflict between the
two is therefore resolved by the DHCP server in
its normal operation. This conflict can only be
resolved by the DHCP server, as it knows what
best to do in order to ensure both network and
datastore consistency.

The resulting system is therefore highly flexible,
low- cost, and very high performance.

Copyright © 2024 InkBridge Networks. All Rights Reserved. 4

We Authenticate The Internet

Contact 

Copyright © 2024 InkBridge Networks. All Rights Reserved. 5

InkBridge Networks

26 rue Colonel Dumont
38000 Grenoble
France

T +33 4 85 88 22 67
F +33 4 56 80 95 75
W https://inkbridgenetworks.com
E sales@inkbridge.io

InkBridge Networks (Canada)

100 Centrepointe Drive, Suite 200
Ottawa, ON, K2G 6B1
Canada

T +1 613 454 5037
F +1 613 280 1542

http://inkbridgenetworks.com
mailto:sales@inkbridge.io

	Executive Summary
	1. Introduction
	1.1 Why FreeRADIUS
	1.2 Performance Optimizations
	1.3 Benefits of Redis
	2. Customer Use-Case
	2.1 Databases and Directories Used
	2.2 System Migration
	2.2 Fail-Over and Fail-Back
	2.3 How we use Redis
	3. DHCP Operation
	3.1 DHCP Discover
	3.2 DHCP Request
	3.3 DHCP Release
	3.4 Lease Management
	Contact

